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DAM-BREAK FLOWS OVER A BOTTOM DROP

UDC 519.63V. V. Ostapenko

The single-layer shallow-water model is used to study flows generated by dam break over a bed level
discontinuity in the form of a drop from which water flows. Emphasis is given to submerged regimes
in which downstream wave processes affect the upstream flow. The paper considers solutions in which
the total flow energy is conserved on the drop and solutions in which the energy is lost on the drop.
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1. Formulation of the Problem. In the case of a rectangular channel of constant width and varying
depth, the single-layer shallow-water differential equations [1–3] ignoring friction are written as

ht + qx = 0, qt + (qv + h2/2)x = −hbx, (1.1)

where h(x, t), q(x, t), and v = q/h are the flow depth, rate, and velocity, respectively, and b(x) is the bed level.
The acceleration of gravity is g = 1. For system (1.1), we consider the following problem of decay of an initial level
discontinuity z = b+ h in water initially at rest:

z(x, 0) =
{
z0, x > 0,
z1, x < 0,

z1 > z0, v(x, 0) = 0 (1.2)

over a sudden change in the bed level

b(x) =
{

0, x > 0,
δ, x < 0,

δ > 0. (1.3)

Because z1 > z0, it follows that for t > 0, the fluid in the vicinity of the discontinuity (1.3) flows in the
positive direction of the x axis; therefore, in the nomenclature of [4], the discontinuity (1.3) is a bottom drop from
which water flows down. Since the classical problem (1.1), (1.2) of decay of an initial discontinuity of water at rest
over a horizontal bottom where bx = 0 is generally called the dam break problem [5], we shall call the problem
(1.1)–(1.3) the problem of dam break over a bottom drop. The solution of this problem at x < 0 will be called
flow on the left of the drop and the solution at x > 0, flow on the right of the drop; the exact solution on the
discontinuity (1.3) at x = 0− 0 will be called flow over the drop and that at x = 0 + 0, flow behind the drop.

The problem (1.1)–(1.3) is a particular case of the general problem of decay of an arbitrary discontinuity over
a sudden change in bed level. The latter was studied by Alcrudo and Benkhaldon [6], who gave various examples of
solution of this problem assuming that the total flow energy is conserved on the discontinuity (1.3). However, they
did not study the uniqueness of these solutions nor determined the regions of existence for them. In the particular
case of the problem (1.1)–(1.3) where the flow forming on the bottom drop is critical, there is a nonsubmerged
regime of head and tail conjugation. This case was studied by Atavin and Vasil’ev [7], who analyzed hydraulic
processes occurring during break of the gate of a multichamber shipping lock. Ostapenko [8, 9] studied the unique
solvability of the problem (1.1)–(1.3) at δ < 0 for flow over a bed level discontinuity in the form of a step on which
water flows. Unlike in [8], where the total flow energy was assumed to be conserved on the bottom step, in [9] both
cases of conservation and loss of the total flow energy on the bottom step were explored.

In the present paper, which is a continuation of [8, 9], the solvability of the generalized decay discontinuity
problem (1.1)–(1.3) is examined for both cases of conservation and loss of the total flow energy on the bottom

Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090.
Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 44, No. 6, pp. 107–122, November–December,
2003. Original article submitted March 25, 2003; revision submitted April 14, 2003.

0021-8944/03/4406-0839 $25.00 c© 2003 Plenum Publishing Corporation 839



hhc0 Hc
+

Jc

Hc
_

J

Jc+d

Fig. 1

drop. In contrast to [7], the present study focuses on submerged flow regimes, in which downstream processes affect
upstream flow.

2. Admissible Flows over a Bottom Drop with Conservation of the Total Flow Energy. We
assume that the total flow energy is conserved on the discontinuity (1.3). Taking into account the continuity of the
flow rate, this assumption leads to the following relation on the bottom drop [3, 9]:

J(H, q) = J(h, q) + δ. (2.1)

Here the function J(ξ, q) is defined by the formula

J(ξ, q) = q2/(2ξ2) + ξ, (2.2)

q = hv = HV is the flow rate and h and v and H and V are the flow parameters over the drop and behind the
drop, respectively. As is shown in [8], condition (2.1) admits two flow configurations on the discontinuity (1.3). For
the first configuration,

H > h+ δ, V < v, V <
√
H, v <

√
h (2.3)

and for the second configuration,

H < h, V > v, V >
√
H, v >

√
h. (2.4)

It follows from Eq. (2.1) that for specified flow rate q and depth H behind the drop, the depth h above
the drop is determined as an argument of function (2.2) for which it takes the value J(H, q) − δ. For q = const,
function (2.2), whose plot is shown in Fig. 1, reaches a minimum

Jc = min
x
J(x, q) = 3q2/3/2

for the critical value hc = v2
c = q2/3. Therefore, the problem of determination of the depth h has a solution either for

H > H+
c (q), which corresponds to configuration (2.3), or for H 6 H−c (q), which corresponds to configuration (2.4),

where H+
c (q) > H−c (q) are the arguments of function (2.2), for which it takes the value

Jc + δ = 3q2/3/2 + δ.

For q > 0, the critical flow parameters over the drop

hc = q2/3, vc = q1/3 (2.5)

are strictly monotonically increasing functions of q. The following theorem shows that this property holds in shock
transitions hc → H±c through the discontinuity (1.3).

Theorem 1. The functions H±c (q) and V ±c (q) = q/H±c (q) for q > 0 are strictly monotonically increasing
functions.
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Proof. The quantities H±c (q) are roots of the equation

q2

2H2
+H =

3
2
q2/3 + δ,

whose total differential can be written as
αdH =

(
q−1/3 − V/H

)
dq, (2.6)

where, in view of (2.3) and (2.4),
α = 1− V 2/H = (H − V 2)/H. (2.7)

Therefore, using (2.5), from (2.6) we obtain

Hq =
1
α

( vc
hc
− V

H

)
=
q(H2 − h2

c)
αH2h2

c

. (2.8)

Since Vq = (q/H)q = (H − qHq)/H2, taking into account (2.7) and (2.8), we have

Vq =
1
H2

(
H − q

α

( vc
hc
− V

H

))
=
αH + V 2 − v2

c

αH2
=
H − hc
αH2

. (2.9)

Since q > 0, for both admissible configurations (2.3) and (2.4), for the first of which H > hc and α > 0 and for the
second, H < hc and α < 0, we obtain Hq > 0 and Vq > 0 from formulas (2.8) and (2.9). Theorem 1 is proved.

Theorem 1 implies that on the plane of variables (h, v) (Fig. 2), the parameters H and V of the admissible
flows behind the drop lie not above the monotonically increasing curve of v = v+

c (h) = V +
c (q+

c (h)) or not below
the monotonically increasing curve of v = v−c (h) = V −c (q−c (h)) [q±c (H) are the inverse functions to H±c (q)]; these
curves are located in the regions of subcritical and supercritical flows, respectively. As is shown in [8], for q > 0,
the shock transition hc → H−c (see Fig. 1) is stable [in Fig. 2, it corresponds to transition from the critical flow line
v = vc(h) =

√
h to the line v = v−c (h)] and the shock transition hc → H+

c is unstable [in Fig. 2 corresponds to
transition from the line v = vc(h) to the line v = v+

c (h)].
In the solution of the discontinuity decay problem (1.1)–(1.3), a discontinuous s-wave propagates over the

background z0 to the right of the bottom drop. Behind the front of this wave, the steady flow parameters H2 and
V2 lie on the shock s-adiabat

V = vs(H,h0) =
√

(H + h0)/(2Hh0)(H − h0), h > h0, (2.10)

which is a monotonically increasing function that issues from the point h0 on the h axis. A centered depression
r-wave propagates over the background z1 to the left of the bottom drop. The steady flow parameters h2 and v2

behind this wave lie on the r-wave adiabat

v = vr(h, h1) = 2(
√
h1 −

√
h), h < h1, (2.11)

which is a monotonically decreasing function that issues from the point h1 on the h axis.
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We assume that the steady flows (H2, V2) and (h2, v2) are subcritical and, by virtue of this, continue up
to the bottom drop (Fig. 3), thus forming a steady discontinuous flow on the drop that satisfies conditions (2.1)
and (2.3). In this case, to prove the unique solvability of the problem (1.1)–(1.3) using the generalized adiabatic
method [9, 10], it is necessary to examine the conservation of the monotonic properties of the adiabats (2.10) and
(2.11) in transition over the bottom drop. In Sec. 3, this question is studied for the shock s-adiabat (2.10).

3. Conservation of the Property of Monotonic Increase of the Function V (H) in Transition
over the Bottom Drop. Let us consider a one-parameter family of steady discontinuous flows with depth H

and velocity V (H) behind the drop and depth h(H) and velocity v(H) on the drop and establish the conditions
under which a monotonic increase in the function V (H) implies unique definiteness and a monotonic increase of
the function v = ṽ(h) = v(H(h)) [H(h) is the inverse function to h(H)].

Theorem 2. If a positive, strictly monotonically increasing function V (H) with values in the subcritical
(supercritical) flow region satisfies the condition V (H) < v+

c (H) (V (H) > v−c (H)), its corresponding function
v = ṽ(h) with values in the subcritical (supercritical) flow region is uniquely defined and is a strictly monotonically
increasing function if and only if the following inequalities are satisfied for the derivative VH of the function V (H):

V (H − h)
H(h− V 2)

< VH <
h2 −HV 2

V (H2 − h2)
. (3.1)

Proof. Since the total differential of Eq. (2.1) can be written as

α0 dh = α1 dH + (V/H − v/h) dq, (3.2)

where, with allowance for Eqs. (2.2)–(2.4),

α0 = Jh(h, q) = 1− v2/h 6= 0, α1 = JH(H, q) = 1− V 2/H 6= 0, (3.3)

then, from (3.2), as in the proof of theorem 1 in [9], we obtain

hH =
1
α0

(
α1 +

q(h2 −H2)
h2H2

qH

)
, vH =

(h−H)qH + α1H
2VH

α0h2
. (3.4)

Here

qH = (HV )H = V +HVH > 0. (3.5)

Since α1(h − H) < 0, derivatives (3.4) are not necessarily positive for any positive VH . Therefore, using
formula (3.5), we write them as

hH = (a− bVH)/(α0h
2), vH = (cVH − d)/(α0h

2), (3.6)

where

a = h(h− vV ), b = V (H2 − h2), c = H(h− V 2), d = V (H − h) (3.7)

are positive under conditions (2.3) and negative under conditions (2.4). Assuming that

VH 6=
a

b
=

h(h− vV )
V (H2 − h2)

=
h2 −HV 2

V (H2 − h2)
⇒ hH 6= 0,

from (3.6), we find that

vh =
vH
hH

=
cVH − d
a− bVH

= α
VH − β1

VH − β2
. (3.8)

Here

α = −c
b

=
H(V 2 − h)
V (H2 − h2)

< 0, β1 =
d

c
=

V (H − h)
H(h− V 2)

> 0, β2 =
a

b
=

h2 −HV 2

V (H2 − h2)
> 0. (3.9)

Let us show that β2 > β1, i.e., ac > bd. For this, taking into account Eq. (3.7) and the equality V = hv/H,
we transform the difference ac− bd as follows:

ac− bd = H(h− V 2)(h2 −HV 2)− V 2(H − h)(H2 − h2)

= (h/H)2
(
h(H − v2)(H2 − hv2)− v2(H − h)(H2 − h2)

)
. (3.10)
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We assume that conditions (2.3) are satisfied. Then, the positiveness of (3.10) follows from the inequalities

h > v2, H − v2 > H − h > 0, H2 − hv2 > H2 − h2 > 0.

If conditions (2.4) are satisfied, then v2 > h and the positiveness of (3.10) written as

ac− bd = (h/H)2
(
h(v2 −H)(hv2 −H2)− v2(h−H)(h2 −H2)

)
follows from the inequalities

h(v2 −H) > v2(h−H) > 0, hv2 −H2 > h2 −H2 > 0.

Since β2 > β1, it follows from (3.8) that the derivative vh is positive only for β1 < VH < β2. If these
inequalities are satisfied, derivatives (3.6) are also positive, as follows from

hH = (β2 − VH)/(α0bh
2), vH = (VH − β1)/(α0ch

2),

where α0b > 0 and α0c > 0 for both admissible configurations (2.3) and (2.4). Theorem 2 is proved.
Inequalities (3.1) impose strict restrictions on the value of the derivative of the function V (H) which retains

the property of monotonic increase in transition over the drop (1.3) from right to left. Thus, in the subcritical flow
region, the boundaries

β1 =
V (H − h)
H(h− V 2)

=
v(H − h)
H2 − hv2

, β2 =
h2 −HV 2

V (H2 − h2)
=

h(H − v2)
v(H2 − h2)

(3.11)

of the interval of conservation of monotonicity (β1, β2) are, respectively, monotonically increasing and monotonically
decreasing functions of V and v and

lim
V→0

β1 = 0, lim
V→0

β2 = +∞, lim
V→v+

c −0
βi = lim

v→vc−0
βi = f(H+

c , V
+
c ).

Here with allowance for (2.5), f(H,V ) = q1/3/(H + q2/3); q = HV . Conversely, in the supercritical flow region, the
boundaries β1 and β2 are, increasing, monotonically decreasing and monotonically functions of V and v, respectively,
and

lim
V→+∞

β1 = 0, lim
V→+∞

β2 = +∞, lim
V→v−c +0

βi = lim
v→vc+0

βi = f(H−c , V
−
c ).

From this it follows that in the subcritical flow region, the length of the interval (β1, β2), being infinitely great as
V → 0, decreases monotonically with increase in V and becomes infinitely small as V → v+

c −0; in the supercritical
flow region, the length of this interval, being infinitely great as V → +∞, decreases monotonically with decrease
in V and becomes infinitely small as V → v−c + 0. Therefore, in order that a function V (H) with values in the
subcritical flow region remain a monotonically increasing function in transition over the drop as V → v+

c − 0, its
derivative VH must satisfy the condition

lim
V→v+

c −0
VH = f(H+

c , V
+
c ). (3.12)

Similarly, in order that a function V (H) with values in the supercritical flow region remain a monotonically increasing
function in transition over the drop as V → v−c + 0, its derivative VH must satisfy the condition

lim
V→v−c +0

VH = f(H−c , V
−
c ). (3.13)

If a monotonically increasing function V (H) is the shock s-adiabat (2.10), the depths H±c included in
conditions (3.12) and (3.13) should be roots of the equation

(H + q2/3)(vs)H = q1/3, (3.14)

where

q = Hvs = (H − h0)

√
H(H + h0)

2h0
, (vs)H =

2H2 +Hh0 + h2
0

2H
√

2Hh0(H + h0)
. (3.15)

Since Eq. (3.14), in view of (3.15), is uniform with respect to H and h0, it can be written as

(ξ + η2)(2ξ2 + ξ + 1) = 2ξη
√

2ξ(ξ + 1), (3.16)

where η = 6
√
ξ(ξ + 1)(ξ − 1)2/2 and ξ = H/h0.
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We introduce the notation

a = 2ξ2 + ξ + 1, b = ξ
√

2ξ(ξ + 1), c = ξa = ξ(2ξ2 + ξ + 1)

and view Eq. (3.16) as being quadratic for η:

aη2 − 2bη + c = 0. (3.17)

Equation (3.17) has real roots if its discriminant

D = b2 − ac = 2ξ3(ξ + 1)− ξ(2ξ2 + ξ + 1)2 > 0.

However, for ξ > 1m, the discriminant

D < 2ξ3(ξ + 1)− ξ(4ξ4 + 4ξ3) = 2ξ3(ξ + 1)(1− 2ξ) < 0.

Hence, Eqs. (3.16) and (3.17) do not have real solutions for ξ > 1 and Eq. (3.14) does not have real solutions
for H > h0. Thus, we proved that the shock s-adiabat (2.10) does not satisfy conditions (3.12) and (3.13) for all
h0 > 0 and δ > 0. Hence, for the shock s-adiabats, the property of monotonic increase is lost in transition over
the bottom drop. This property is violated when the s-adiabat approaches the critical line v+

c (h) from below and
the critical line v−c (h) from above. This is illustrated in Fig. 2, where the monotonic curve ABCD is a plot of
the adiabat (2.10) and the nonmonotonic curves A1B1 and C1D1 are images of the segments AB and CD of this
adiabat for transition over the drop.

It follows from Fig. 2 that the monotonicity is violated because when approaching the of critical flow line
v =
√
h, the function v = ṽ(h), plotted as the curves A1B1 and C1D1, becomes nonunique; therefore, the function

v = ṽ(h) cannot be used to prove the unique solvability of the discontinuity decay problem (1.1)–(1.3) using the
generalized adiabatic method. In this connection, we study the problem of conservation of monotonic decrease for
the wave r-adiabat (2.11) in transition over the drop (1.3) from right to left.

4. Conservation of Monotonic Decrease of the Function v(h) in Transition over the Bottom
Drop. Let us consider a one-parameter family of steady discontinuous flows with depth h and velocity v(H)
on the drop and depth H(h) and velocity V (h) behind the drop and establish the conditions under which a
monotonic decrease in the function v(h) implies unique definiteness and a monotonic increase of the function
V = Ṽ (H) = V (h(H)) [h(H) is a the inverse function to H(h)].

Theorem 3. If the values of a positive, strictly monotonically decreasing function v(h) belong to the subcriti-
cal (supercritical) flow regions, its corresponding function V = Ṽ (H) with values in the subcritical (supercritical) flow
region is uniquely defined and is a strictly monotonically increasing function if and only if the following inequalities
are satisfied for the derivative vh of the function v(h):

hv2 −H2

v(H2 − h2)
< vh <

v(H − h)
h(v2 −H)

. (4.1)

Proof. Using (3.3), from Eq. (3.2) we obtain the following formulas [similar to (3.4)] for the derivatives Hh

and Vh:

Hh =
1
α1

(
α0 +

q(H2 − h2)
H2h2

qh

)
, Vh =

(H − h)qh + α0h
2vh

α1H2
. (4.2)

Here

qh = (hv)h = v + hvh. (4.3)

Substituting (4.3) into (4.2), after transformation, we obtain

Hh = (b1vh + a1)/(α1H
2), Vh = (c1vh + d1)/(α1H

2), (4.4)

where a1 = H(H − V v), b1 = v(H2 − h2), c1 = h(H − v2), and d1 = v(H − h) are positive under conditions (2.3)
and negative under conditions (2.4). Assuming that

vh 6= −
a1

b1
=
H(H − V v)
v(H2 − h2)

=
H2 − hv2

v(H2 − h2)
⇒ Hh 6= 0,

from (4.4), using the notation (3.9), we have

VH =
Vh
Hh

=
c1vh + d1

b1vh + a1
= β2

vh − γ2

vh − γ1
, (4.5)
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where

γ1 = α =
H(V 2 − h)
V (H2 − h2)

< 0, γ2 =
αβ1

β2
=
V (H − h)
HV 2 − h2

< 0.

Since β2 > β1, it follows that γ2 > γ1; therefore, formula (4.5) implies that the derivative VH is negative
only for γ1 < vh < γ2. If these inequalities are satisfied, the derivative Hh is positive and the derivative Vh are
negative, as follows from

Hh = (vh − γ1)/(α1b1H
2), Vh = (vh − γ2)/(α1c1H

2),

where α1b1 > 0 and α1c1 > 0 for both admissible configurations (2.3) and (2.4). Since V = hv/H, the expressions
for the boundaries of the interval of conservation of monotonicity (γ1, γ2) can be written as

γ1 =
hv2 −H2

v(H2 − h2)
, γ2 =

v(H − h)
h(v2 −H)

. (4.6)

Theorem 3 is proved.
Inequalities (4.1) impose substantial restrictions on the value of the derivative of the function v(h) which

retains the property of monotonic decrease in transition over the drop (1.3) from left to right. Similarly to bound-
aries (3.11), boundaries (4.6) in the subcritical flow region are monotonically increasing and monotonically decreasing
functions of v, respectively, such that

lim
v→0

γ1 = −∞, lim
v→0

γ2 = 0, lim
v→vc−0

γi = − 1√
h
.

In the supercritical flow region, they are monotonically decreasing and monotonically increasing functions of v,
respectively, such that

lim
v→+∞

γ1 = −∞, lim
v→+∞

γ2 = 0, lim
v→vc+0

γi = − 1√
h
.

From this it follows that in the subcritical flow region, the length of the interval (γ1, γ2), being infinitely great
as v → 0, decreases monotonically with increase in v and becomes infinitely small as v → vc−0; in the supercritical
flow region, the length of this interval, being infinitely large as v → +∞, decreases monotonically with decrease
in v and becomes infinitely small as v → vc + 0. In spite of this, for all h1 > 0, the derivative (vr)h = −1/

√
h

of the wave r-adiabat (2.11) satisfies inequalities (4.1) both in the subcritical flow region (vr <
√
h) and in the

supercritical flow region (vr >
√
h), i.e.,

H2 − hv2
r

vr(H2 − h2)
>

1√
h
>
vr(H − h)
h(H − v2

r)
(4.7)

for all positive h 6= 4h1/9.
To prove inequalities (4.7), we multiply each of them by the velocity vr > 0. As a result, we obtain

H2 − h2f2
r

H2 − h2
> fr >

(H − h)f2
r

H − hfr
(4.8)

(fr = vr/
√
h is the Froude number). Direct check shows that inequalities (4.8) are true both under conditions (2.3),

when fr < 1, and under conditions (2.4), when fr > 1.
Thus, in contrast to the shock s-adiabat (2.10), the wave r-adiabat (2.11) remains monotonic in transition

over the bottom drop for all h1 > 0 and δ > 0. Therefore, in contrast to the problem of dam break over a step [9],
it is the image of the wave r-adiabat that should be used in the generalized adiabatic method to prove the unique
solvability of the discontinuity decay problem (1.1)–(1.3) for the case of submerged flow over a drop.

5. Self-Similar Solutions for Submerged Flow over the Drop. As is shown in Sec. 4, the portion
of the wave r-adiabat (2.11) lying in the subcritical flow region for h > 4h1/9 (curve h1P2 in Fig. 4) is converted
by means of the energy relation (2.1) to a monotonically decreasing function V = Ṽr(H), which also belongs to the
subcritical flow region (curve z1P4 in Fig. 4). Since relation (2.1) is written as the equation

H3 − (v2/2 + h+ δ)H2 + q2/2 = 0,

which is cubic for H, the function V = Ṽr(H) can be defined in parametric form

H = Hr(h) = F (h, vr(h, h1)), V = Vr(h) = hvr(h, h1)/Hr(h), h ∈ (4h1/9, h1), (5.1)
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where vr(h, h1) is the wave r-adiabat (2.11); the function F (h, v) is defined by Cardano’s formula

F (h, v) = a
(

2 cos
(1

3
arccos

(
1− h2v2

4a3

))
+ 1
)
, a =

v2 + 2(h+ δ)
6

.

From a monotonic increase in the shock s-adiabat (2.10) and a monotonic decrease in the function V = Ṽr(H),
which is the image of the wave r-adiabat (2.11) in transition over the drop, it follows that the discontinuity decay
problem (1.1)–(1.3) is uniquely solvable for

h0 ∈ (h04, z1), z1 = h1 + δ. (5.2)

Here h04 is the point on the h axis for which the shock s-adiabat vs(h, h04) intersects the point P4 in Fig. 4.
The value of h04 is calculated as follows. First, the formulas

hc = 4h1/9, vc =
√
hc = 2

√
h1/3 (5.3)

are used to determine the coordinates of the point P2 at which the wave r-adiabat (2.11) intersects the critical flow
line v =

√
h. Next, from (5.1) and (5.3) we derive the formulas

H+
c = Hr(hc), V +

c = Vr(hc) = h3/2
c /Hr(hc),

and use them to find the coordinates of the point P4 at which line (5.1) intersects the hyperbola

v = qc/h, qc = hcvc = 8
√
h3

1/27, (5.4)

issuing from the point P2. After this, the value of h04 is determined from the equation

vs(H+
c , h04) = V +

c , (5.5)

where vs(h, h0) is a function of the shock s-adiabat (2.10). Equation (5.5) can be written as

ξ3 − ξ2 − (2(V +
c )2/H+

c + 1)ξ + 1 = 0,

which is a cubic equation for ξ = h04/H
+
c . Solution of this equation yields h04 = G(H+

c , V
+
c ), where the function

G(h, v) is calculated from Cardano’s formula

G(h, v) =
h

3

(
2p cos

(1
3

(
2π − arccos

9f2 − 8
p3

))
+ 1
)

(5.6)

(p =
√

6f2 + 4 and f = v/
√
h).

In the exact solution obtained under condition (5.2) there are two regions of constant subcritical flows (see
Fig. 3): 1) the region (h2, v2) between the depression r-wave and the drop; 2) the region (H2, V2) between the
drop and the discontinuous s-wave. The constant-flow parameters H2 and V2 are the coordinates of the point P at
which the shock s-adiabat (2.10) intersects the plot of function (5.1) (curve z1P4 in Fig. 4), and the constant-flow
parameters h2 and v2 are the coordinates of the point R at which the wave r adiabat (2.11) intersects the hyperbola
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v = q/h, q = H2V2 issuing from the point P . The depths h2 and H2 and the velocities v2 and V2 of these constant
flows satisfy the system of equations

v2 = vr(h2, h1), V2 = vs(H2, h0), V 2
2 /2 +H2 = v2

2/2 + h2 + δ, H2V2 = h2v2,

whose solution can be obtained as follows. First, from the equation Vr(h2) = vs(Hr(h2), h0), where Hr(h) and
Vr(h) are functions (5.1), we find the depth h2 on the left of the drop. Next, the flow velocity v2 on the left of the
drop is determined from the formula v2 = vr(h2, h1) = 2(

√
h1 −

√
h2) and the flow parameters H2 and V2 on the

right from the drop are calculated from the formulas H2 = Hr(h2) and V2 = Vr(h2). After that, using the formula

D =
√
H2(H2 + h0)/(2h0), (5.7)

we find the speed of propagation of the discontinuous s-wave. Formula (5.7) follows from the Hugoniot conditions

D[h] = [q], D[q] = [qv + h2/2] (5.8)

obtained from the laws of conservation of mass and total momentum (1.1) over a horizontal bottom when bx = 0.
As follows from Fig. 4, with decrease in the initial depth h0 from z1 to h04, the depth H2 behind the drop

decreases from z1 to H+
c and the velocity behind the drop (V2) increases from 0 to V +

c ; at the same time, the
depth h2 on the drop decreases from h1 to hc, and the velocity v2 on the drop increases from 0 to vc. Thus, the
solutions constructed are flows with a submerged bottom drop since the flow parameters H2 and V2 behind the
drop affect the flow parameters h2 and v2 on the drop; in this case, the flow level always increases when the fluid
flows down the drop (see Fig. 3). Thus, in the case of the submerged flow regime that occurs under condition (5.2),
the discontinuity decay problem (1.1)–(1.3) is uniquely solvable under the assumption (2.1) of conservation of the
total flow energy on the bottom drop.

6. Self-Similar Solutions for Nonsubmerged Flow over the Drop. We assume that the initial
depth h0 to the right of the drop satisfies the inequality h0 < h04. By virtue of this, the right boundary of the
depression r-wave propagating over the background z1 is located directly on the drop (Fig. 5), thus generating critical
flow (hc, vc) over the drop, whose parameters are calculated from formulas (5.3). In this case, two characteristics of
system (1.1) arrive at the drop (1.3) from the left (at x 6 0− 0), producing a nonsubmerged flow regime in which
the flow parameters behind the drop have no effect on the flow over the drop.

As is shown in [8], under the assumption (2.1) of conservation of the total flow energy in transition over
the drop, the solutions with the critical flow over the drop are stable only under conditions (2.4), where the flow
behind the drop is supercritical. The parameters H−c and V −c of this supercritical flow do not depend on the wave
processes on the right of the drop at x > 0 and are completely determined by the critical flow (hc, vc) over the drop.
In view of (2.1) and (5.3), the values of H−c and V −c satisfy the energy relation

(V −c )2/2 +H−c = 3hc/2 + δ,

which, with allowance for

H−c V
−
c = H+

c V
+
c = hcvc = qc, (6.1)
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is conveniently written as (V −c )3 − (3hc + 2δ)V −c + 2qc = 0, which is cubic for V −c . Solving this equation, we
obtain V −c = Ψ(hc, qc) and H−c = qc/V

−
c , where the function Ψ(h, q) is calculated from Cardano’s formula

Ψ(h, q) = 2r cos
(1

3
arccos

(
− q

r3

))
, r =

√
h+

2
3
δ.

In Fig. 4, the flow (H−c , V
−
c ) corresponds to the point P1 on the part of the hyperbola (5.4) shown by a dashed line

that issues from the point P2 into the region of supercritical flows.
Construction of a solution of the problem on the right of the drop at x > 0 reduces solving the classical

problem of decay of a discontinuity above a horizontal bottom [11] for system (1.1) with the following initial data:

h(x, 0) =
{

h0, x > 0,
H−c , x 6 0,

v(x, 0) =
{

0, x > 0,
V −c , x 6 0.

(6.2)

To solve problem (6.2), it is necessary to find the point intersection of the monotonically increasing shock s-adiabat
(2.10) issuing from the point h0 on the h axis and the monotonically decreasing r-adiabat

v = v1
r(h,H−c , V

−
c ) = V −c + α(h,H−c ), α(h,H) =

{
−vs(h,H), h > H,
vr(h,H), h 6 H,

(6.3)

issuing from the point P1 = (H−c , V
−
c ).

We first assume that h0 ∈ (0, h01) [h01 = G(H−c , V
−
c ) is the point on the h axis for which the shock s-adiabat

vs(h, h01) passes through the point P1]. Then, the s-adiabat (2.10) intersects the r-adiabat (6.3) in its wave part
(on the left of the point P1 in Fig. 4), thus forming flow on the right of the drop with a depression r-wave and
a discontinuous s-wave (line 1 in Fig. 5). The depth H2 of the constant flow (H2, V2) between these waves is
determined from the equation vs(H2, h0)− vr(H2,H

−
c ) = V −c , after which the velocity V2 of this flow is calculated

from the formula

V2 = vs(H2, h0), (6.4)

and the speed of propagation D of the discontinuous s-wave is found from formula (5.7). If h0 = 0, the discontinuous
s-wave degenerates and the right boundary of the decreasing r-wave located on the right of the drop moves over
the dry channel with the velocity Vd = V −c + 2

√
H−c . If h0 = h01, the depression r-wave degenerates on the right

of the drop and the constant supercritical flow (H−c , V
−
c ) reaches the front of the discontinuous s-wave (dashed line

2 in Fig. 5), i.e., in this case, H2 = H−c and V2 = V −c .
We now assume that h0 ∈ (h01, h05) [h05 = G(H−c ,−V −c ) is the coordinate of the point at which the r-adiabat

(6.3) intersects the h axis). Then, the s-adiabat (2.10) intersects the r-adiabat (6.3) in its shock part (on the right
of the point P1 in Fig. 4), thus forming flow with two discontinuous waves. The depth H2 of the constant flow
(H2, V2) between these waves is determined from the equation vs(H2, h0) + vs(H2,H

−
c ) = V −c . After that, the

velocity V2 of this flow and the speed D of propagation of the discontinuous s-wave are calculated from formulas
(6.4) and (5.7), and the speed D1 of propagation of the discontinuous r-wave is calculated from the formula

D1 = V −c −
√
H2(H2 +H−c )/(2H−c ) (6.5)

derived from the Hugoniot conditions (5.8).
Within the framework of the general problem (1.1)–(1.3), the solution with two discontinuous waves on the

right of the drop (line 3 in Fig. 5) is meaningful only if the speed of the discontinuous r-wave D1 > 0, which is
equivalent to the condition H2 < H∗2 , where

H∗2 = H−c (
√

1 + 8(V −c )2/H−c − 1)/2

is a root of equation (6.5) for D1 = 0. At the depth H2 = H∗2 , the discontinuous r-wave merges with the discontinuity
on the drop, thus forming a uniform standing jump, behind which the velocity V ∗2 = qc/H

∗
2 . This fact and Eq. (6.1)

imply that the point P3 = (H∗2 , V
∗
2 ) is the point of intersection of the shock part of the r-adiabat (6.3) (curve

P1P
′
2P3 in Fig. 4) with the part of the hyperbola (5.4) located in the subcritical flow region (line P2P4 in Fig. 4). In

this case, the point P3 = (H∗2 , V
∗
2 ) lies on the hyperbola (5.4) between the points P2 = (hc, vc) and P4 = (H+

c , V
+
c )

since on the hydraulic jump, the total flow energy is lost, whereas in the shock transition hc → H+
c (transition from

the point P2 to the point P4 in Fig. 4), it is conserved.
Thus, the solution with two discontinuous waves on the right of the drop exists only under the condition

h0 ∈ (h01, h03), in which h03 ∈ (h02, h04) [h02 = G(hc, vc) and h03 = G(H∗2 , V
∗
2 ) are points on the h axis that are
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the start points for the shock s-adiabats (2.10) passing through the points P2 and P3 in Fig. 4, respectively]. From
this it follows that nonsubmerged flow regimes in which the total flow energy is conserved in transition over the
drop can exist only at h0 < h03 < h04. This implies that at the initial downstream depths

h0 ∈ (h03, h04), (6.6)

the discontinuity decay problem (1.1)–(1.3) is unsolvable under the assumption (2.1) of conservation of the total
flow energy in transition over the bottom drop. This is a fundamental feature that distinguishes this problem from
the problem of discontinuity decay (1.2) over a bottom step [for δ < 0 in formula (1.3)], which, as is shown in [9],
is always uniquely solvable under condition of conservation of the total flow energy in transition over a step.

7. Energetically Stable Solutions with Three Characteristics that Arrive at the Bottom Drop.
Since, under condition (6.6), the discontinuity decay problem (1.1)–(1.3) is unsolvable using the energy relation
(2.1), we consider its solutions in which the total flow energy is lost in transition over the bottom drop. As is
shown in [9], there are two classes of such solutions: solutions in which two characteristics of system (1.1) arrive at
the discontinuity (1.3) and solutions in which three characteristics of this system arrive at the discontinuity (1.3).
To close the shallow-water model for solutions of the first class, one needs to modify Eq. (2.1) by introducing an
heuristic parameter that defines the part of the total flow energy that is lost in transition over the drop. For
solutions of the second class, it suffices to require continuity of the flow rate [q] = 0 to close the conditions on the
discontinuity (1.3). In this case, the part of the total flow energy that is lost during transition over the drop is
determined uniquely within shallow-water theory without introducing any heuristic parameters. In this paper, we
consider solutions of only the second class.

In order that three characteristics arrive at the discontinuity (1.3) in the solution of the problem (1.1)–(1.3),
the right boundary of the depression r-wave propagating over the background z1 must be located on the drop to form
critical flow (hc, vc) on it and the flow behind the drop (H2, V2) must be subcritical or supercritical, i.e., V2 6

√
H2,

where H2 > hc (Fig. 6). Such discontinuous solutions over the drop are in a sense similar to discontinuous waves
over an even bottom, whose characteristic stability requires three characteristics to arrive at the wave front and
only one of them to leave the front [11]. The presence of the third arriving characteristic for discontinuous waves
allows one to uniquely determine the speed of their propagation and, for the case of immovable discontinuities over
the drop, the energy losses on the drop.

As is known [11], the nongrowth of the total energy on discontinuous solutions of the shallow-water equa-
tion (1.1) can be used as an alternative criterion of their stability, which is an analogue of the entropy criterion
of stability for shock waves in gas dynamics [12]. This criterion was extended to the general theory of hyperbolic
systems [13]. However, in contrast to discontinuous waves, for which the characteristic and energy (entropy) criteria
of their stability are equivalent [11, 14], in the case of discontinuous solutions of the second class considered in the
present paper, the energy stability criterion significantly limits the set of these solutions. Indeed, if the critical
flow (hc, vc) has formed on the drop, the subcritical flow parameters behind the drop H2, V2 (H2V2 = hcvc = qc)
can correspond to any point of the part of the hyperbola (5.4) located in the subcritical flow region. However, to
ensure nongrowth in the total flow energy in transition over the drop, the point (H2, V2) must lie between the lines
vc and v+

c in Fig. 2, i.e., between the points P2 and P4 of the hyperbola (5.4) in Fig. 4. This follows from the energy
criterion of stability that is a consequence of the law of conservation of the total energy (see [8, 11])

(qv + h2/2)t + (q(v2/2 + h))x = −qbx.
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At an immovable discontinuity over the drop, this criterion has the form

qc[v2/2 + z] 6 0. (7.1)

Since qc > 0, from (7.1), we have

J(H2, qc) 6 J(hc, qc) + δ = Jc + δ, (7.2)

where the function J(ξ, q) is defined by formula (2.2). From the plot of this function (see Fig. 1), one can see that for
the subcritical flow (H2, V2), condition (7.2) is equivalent to the inequalities hc 6 H2 6 H+

c and V +
c 6 V2 6 vc, which

imply that the point with the coordinates H2 and V2 lies on the hyperbola (5.4), between the points P2 = (hc, vc)
and P4 = (H+

c , V
+
c ). Thus, energetically stable solutions of the second class exists at the initial downstream depths

h0 ∈ [h02, h04], (7.3)

when shock s-adiabat (2.10) intersects the hyperbola (5.4) between the points P2 and P4 in Fig. 4. In these
solutions (see Fig. 6), the depth of the constant flow (H2, V2) between the bottom drop and the discontinuous
s-wave is determined from the equation H2vs(H2, h0) = qc. After that, the flow velocity is calculated from the
formula V2 = qc/H2 and the velocity of the discontinuous s-wave, from formula (5.7).

It follows from Fig. 4 that with increase in the initial depth h0 from h02 to h04, the depth H2 behind the
drop increases monotonically and continuously from hc to H+

c , whereas the velocity V2 behind the drop decreases
monotonically and continuously from vc to V +

c . This fact and the inequality H+
c > hc + δ imply that there exists an

initial depth h′0 ∈ (h02, h04) such that the flow levels on the drop and behind the drop are identical, i.e., hc+δ = H2

(dashed line 2 in Fig. 6). The value of h′0 is found from the equation vs(Hc, h
′
0) = Vc, where Hc = hc + δ and

Vc = qc/Hc. Solution of this equation using formula (5.6) yields h′0 = G(Hc, Vc). For h0 ∈ (h02, h
′
0), the flow level

(H2, V2) behind the drop is lower than the critical flow level (hc, vc) on the drop, i.e., H2 < hc + δ (line 1 in Fig. 6),
whereas for h0 ∈ (h′0, h04), conversely, H2 > hc + δ (line 3 in Fig. 6).

From the adiabatic diagram shown in Fig. 4 it follows that the discontinuity decay problem (1.1)–(1.3) is
solvable at all h0 ∈ [0, z1) either for flows for which the total flow energy is conserved on the drop or for flows of the
second class in which the total flow energy is lost on the drop. However, this problem is solved nonuniquely because
for each initial depth h0 ∈ [h02, h03), there exist two solutions: a second-class solution with one discontinuous wave
and subcritical flow behind the drop (see Fig. 6), which corresponds to the intersection of the s-adiabat (2.10) and
the hyperbola (5.4) on the section P2P3 (in this solution, the energy is lost on the drop), and a solution with two
discontinuous waves and supercritical flow behind the drop (line 3 in Fig. 6), which corresponds to the intersection of
the s-adiabat (2.10) and the shock part of the r-adiabat (6.3) on the section P ′2P3 (in this solution, the total energy
is conserved on the drop). Which of these flow regimes occurs in practice depends on the particular conditions of
laboratory experiments.

Let us consider in more detail the boundaries of the segment (7.3), on which second-class solutions are
energetically stable. The continuously increasing initial depth h0 passes through the right boundary h04 of the
segment (7.3) (in Fig. 4, this corresponds to the continuous passage of the point P from the hyperbola P2P4 to
the curve P4z1), whereas second-class solutions (line 3 in Fig. 6) continuously become solutions with a submerged
spillway (see Fig. 3). For the second-class solution obtained at h0 = h02, the flows on the drop and behind the drop
take identical critical values hc and vc that coincide with the constant-flow parameters between the discontinuous
s-wave and the depression r-wave in the solution of the classical problem of dam break over a horizontal bottom
with the initial data (1.2) at z0 = h0 = h02. However, this solution, in contrast to the solutions obtained for
h0 ∈ (h02, h04], is unstable to a slight change in the initial data: for h0 = h02 − ε (ε� 1), the flow behind the drop
becomes supercritical, which leads to a sudden transition from hyperbola (5.4) to the shock part of the r-adiabat
(6.3), i.e., from the curve P2P4 to the curve P1P

′
2P3 in Fig. 4. As a result, this solution becomes a solution with

two discontinuous waves on the right of the drop (line 3 in Fig. 5).
Conclusions. In this paper, we consider only those solutions with a loss of the total flow energy on the

bottom drop in which three characteristics of system (1.1) arrive at the discontinuity (1.3). At the same time, in
the case of real shelves, energy losses take place even in the case of solutions with two characteristics arriving at
the discontinuity (1.3). However, as follows from the results of [9], where similar solutions over a bottom drop
are studied, accounting for such energy losses, which is possible only on the basis of some heuristic information,
leads only to a certain compression of the entire adiabatic diagram (Fig. 4) in the direction of the critical flow
line v =

√
h. This, in turn, narrows the regions of existence of nonsubmerged flow regimes with two discontinuous
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waves and energetically stable flows with three characteristics arriving at the drop. As a result, accounting for
such energy losses, though leading to some qualitative changes in the parameters of the flows constructed, does not
change the flow pattern drastically. This conclusion has been supported to some extent by the results of laboratory
experiments performed V. I. Bukreev and A. V. Gusev, researchers of the Laboratory of Applied Hydrodynamics
of the Lavrent’ev Institute of Hydrodynamics, SD RAS, to check the self-similar solutions of the discontinuity
decay problem (1.1)–(1.3). The types of waves, their velocities, and asymptotic depths behind the front of the
discontinuous s-wave obtained in the present paper agree well with the experimental data.

The author thanks V. I. Bukreev and A. V. Gusev for cooperation and helpful discussions of the results and
A. A. Atavin for providing the full text of [7] whose materials are used in Secs. 6 and 7 of the present paper.
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